

PLASTIC MOULD STEEL

BEST PROPERTIES BY MEANS OF HOMOGENEITY

THE NEW CLASSIC

BÖHLER M303 EXTRA is a corrosion resistant martensitic chromium steel, offering excellent toughness, corrosion and wear resistance. It is characterized by improved machinability and polishability.

And what is special about it – BÖHLER M303 EXTRA was developed for improved homogeneity ensuring excellent usage properties. And the outcome is – compared to 1.2316 – the prevention of delta ferrite in the matrix.

This material is also offered by BÖHLER in the **"High-Hard"-version**, with a significant better wear resistance.

Chemical composition (average %)							
с	Si	Mn	Cr	Ni	Мо	N	Additions
0.27	0.30	0.65	14.50	0.85	1.00	+	others

DIN-Standard: ~1.2316

FIELD OF APPLICATIONS

Moulds for chemically agressive plastics, e.g.:

- » Moulds for household appliances
- » Extrusion tools
- » Moulds for fittings

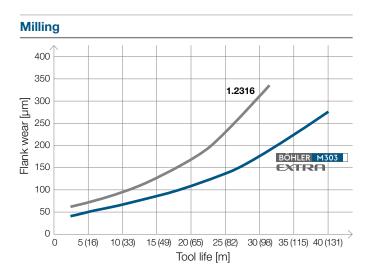
BÖHLER M303

Hardened and tempered: 290 – 330 HB

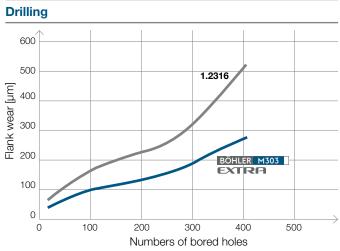
BÖHLER M303

Hardened and tempered: 350 – 390 HB

Homogeneous structure over the entire steel block – helps to avoid bad surprises during manufacturing and use of tools!

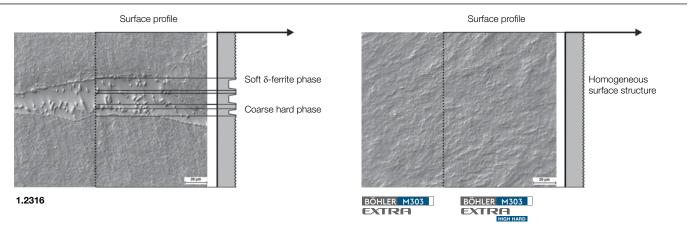

DIN-Number 1.2316 Martensitic structure with delta ferrite content

Hence, particular mechanical technological properties are the result.



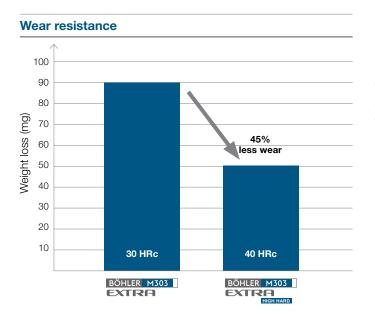
BÖHLER M303 EXTRA Homogeneous structure

BENEFITS FROM MORE EFFICIENT MACHINABILITY

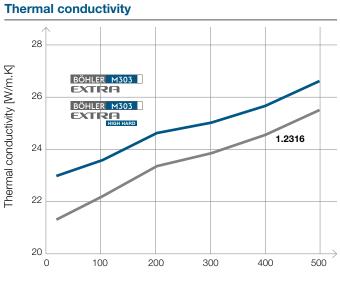

Machining parameter for milling: Cutting speed: $v_c = 200 \text{ m/min}$ Feed/tooth: $f_z = 0.3 \text{ mm}$ Milling cutter diameter: D = 15 mm Number of teeth: z = 1 Depth of cut: $a_p = 0.4 \text{ mm}$ Cutting width: $a_p = 8 \text{ mm}$

Machining parameters for drilling: Cutting speed: $v_c = 60 \text{ m/min}$ Tooth feed/rev.: $f_u = 0.15 \text{ mm}$ Diameter: 6.8 mm

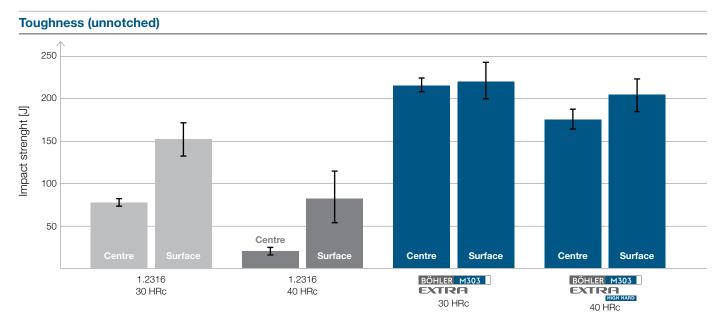
Surface comparison

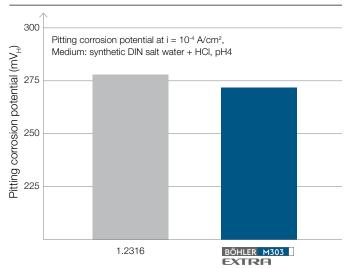


In the case of 1.2316, the hard carbide phases being imbedded in the soft delta ferrite zone, are causing an irregular polish. In contrast **BÖHLER M303 EXTRA** shows regular polish.

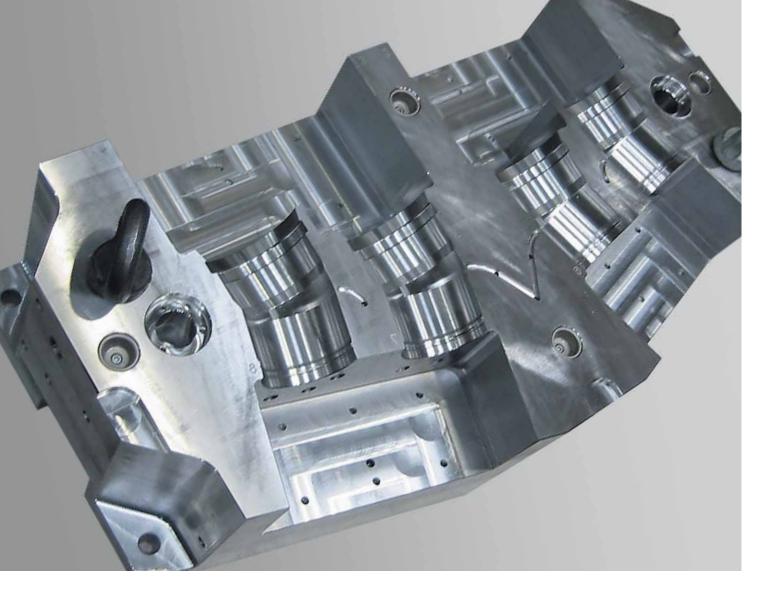

20 68	100 210	200 390	300 570	400 750	500 930	600 1110	℃ °F
460	484	529	564	615	694	795	J/kg.K
-	10.5	10.8	11.1	11.4	11.7	12.1	10 ⁻⁶ m/m.K
7.7	7.7	7.7	7.7	7.6	7.6	7.6	kg/dm ³
218	214	207	200	191	181	168	10 ³ MPa
22.8	23.5	24.8	25.1	25.7	26.7	25.9	W/m.K
	68 460 - - 7.7 218	68 210 460 484 - 10.5 - 7.7 218 214	68 210 390 460 484 529 - 10.5 10.8 - 7.7 7.7 218 214 207	68 210 390 570 460 484 529 564 - 10.5 10.8 11.1 7.7 7.7 7.7 7.7 218 214 207 200	68 210 390 570 750 460 484 529 564 615 - 10.5 10.8 11.1 11.4 7.7 7.7 7.7 7.6 218 214 207 200 191	68 210 390 570 750 930 460 484 529 564 615 694 - 10.5 10.8 11.1 11.4 11.7 7.7 7.7 7.7 7.6 7.6 218 214 207 200 191 181	68 210 390 570 750 930 1110 460 484 529 564 615 694 795 - 10.5 10.8 11.1 11.4 11.7 12.1 7.7 7.7 7.7 7.6 7.6 7.6 218 214 207 200 191 181 168

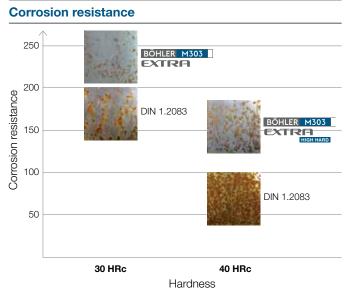
BEST USAGE PROPERTIES


Plastics processing: injection moulding Processed plastic: ULTRAMID A3WG10 (BASF) with content of fibre glass of 50 wt.%


Comparisons made with 1.2316 show that **BÖHLER M303 EXTRA** has a more regular and improved toughness over the block zones thus ensuring a better fracture resistance and avoiding unexpected downtimes.

EXCELLENT CORROSION PROPERTIES


PITTING CORROSION RESISTANCE


Current density potential graphs for both materials 1.2316 and **BÖHLER M303 EXTRA** were recorded. For both steels the corrosion resistance can be compared with each other in the testing medium used here (synthetic DIN seawater + HCl, ph4).

Corrosion resistance

At the salt spray test **BÖHLER M303 EXTRA** exhibits a lower corrosive attack compared to 1.2083 in the same equivalent hardness level.

Salt spray test acc. DIN 50021

Since **BÖHLER M303 EXTRA** is supplied in the hardened and tempered condition (290 – 330 HB, 350 – 390 HB), no heat treatment is generally required.

Stress relieving after machining in the pre-hardened condition

- » max. 400 °C
- » After through-heating, soak for minimum 2 hours in a neutral atmosphere.
- » Slow cooling in furnace with 20 °C/hr down to 200 °C, then in air.

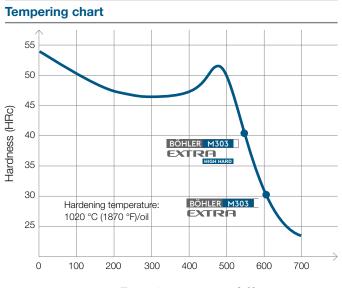
In case a higher hardness is required, following procedure is recommended: Annealing

- » 700 to 725 °C
- » Annealing time minimum 25 hours after through-heating
- » Slow, controlled cooling in furnace at a rate of 10 to 20 °C/hr down to approx. 500 °C, further cooling in air.
- » Hardness after annealing: max. 250 HB

Stress relieving after machining in the annealed condition

- » approx. 650 °C
- » After through-heating, soak for 1 2 hours in a neutral atmosphere.
- » Slow cooling in furnace with 20 °C/hr down to 300 °C, then in air.

Hardening


- » 1000 to 1020 °C/oil, N₂, salt bath (400 to 450 °C)
- » After through-heating, hold for 15 to 30 minutes
- » Obtainable hardness: 51 to 53 HRC

Tempering

- » Slow heating to tempering temperature immediately after hardening
- » Time in furnace 1 hour for each 20 mm of workpiece thickness, but at least 2 hours
- » We recommend the tempering at least twice. A third tempering for stress relieving 30 50 °C below tempering temperature is of advantage.
- » For information on the average hardness figures obtained after tempering please refer to the tempering chart.

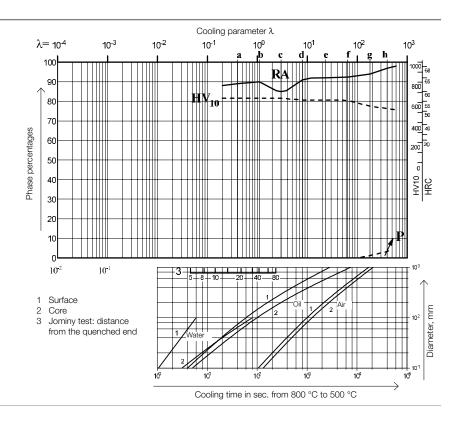
HEAT TREATMENT RECOMMENDATIONS

Tempering temperature [°C]

HEAT TREATMENT RECOMMENDATIONS

Continuous cooling CCT curves

Austenitizing temperature: 1020 °C Holding time: 30 minutes 0.4 400 cooling parameter, i.e. duration o cooling from 800 – 500° C in s x 10 ⁻² KgM Grain boundary martensite Ms – Ms' Formation of grain boundary martensite				
Sample	λ	HV10		
a	0.40	628		
b	1.10	631		
С	3.00	633		
d	8.00	606		


23.00 610 е f 65.00 604 90.00 551 g h 180.00 525

BÖHLER

Quantitative phase diagram

- RA Retained austenite
- A Austenite
- M Martensite
- P Perlite
- K Carbide

MACHINING RECOMMENDATIONS

Turning with sintered carbide

Depth of cut mm	0.5 – 1	1 – 4	4 - 8
Feed mm/rev.	0.1 – 0.2	0.2 - 0.4	0.3 - 0.6
BOEHLERIT-grade	SB10, SB20, EB10	SB10, EB20, EB20	SB30, EB20, HB10
SO grade	P10, P20, M10	P10, M10, M20	P30, M20, K10
Cutting speed v _c (m/min.)	'	'	'
Indexable inserts tool life: 15 min.	260 – 200	200 – 150	150 – 110
Brazed carbide tools tool life: 30 min.	210 – 170	170 – 130	140 – 90
Coated indexable inserts			
BOEHLERIT ROYAL 121	up to 240	up to 210	up to 160
BOEHLERIT ROYAL 131	up to 210	up to 160	up to 140
Tool angles for brazed carbide tools			
Rake angle	12° – 15°	12° – 15°	12° – 15°
Clearance angle	6° – 8°	6° – 8°	6° – 8°
Inclination angle	0°	0°	-4°

Turning with high speed steel

0.5	3	6				
0.1	0.5	1				
S700 / DIN S10-4-3-10						
Cutting speed v _e (m/min.)						
55 – 45	45 – 35	35 – 25				
14° – 18°	14° – 18°	14° – 18°				
8° – 10°	8° – 10°	8° – 10°				
0°	0°	0°				
	0.1 S700 / DIN S10-4-3-10 55 - 45 14° - 18° 8° - 10°	0.1 0.5 S700 / DIN S10-4-3-10 55 - 45 45 - 35 14° - 18° 8° - 10° 8° - 10°				

Milling with inserted tooth cutter

•					
Feed mm/tooth	up to 0.2	0.2 – 0.3			
Cutting speed v _c (m/min.)					
BOEHLERIT SBF/ISO P25	160 – 100	110 – 60			
BOEHLERIT SB40/ISO P40	100 – 60	70 – 40			
BOEHLERIT ROYAL 131/ISO P35	140 – 110	140 – 110			

Drilling with sintered carbide

Drill diameter mm	3 – 8	8 – 20	20 - 40		
Feed mm/rev.	0.02 – 0.05	0.05 – 0.12	0.12 – 0.18		
BOEHLERIT/ISO grade	HB10 / K10				
Cutting speed v_c (m/min.)	50 – 35	50 – 35	50 – 35		
Point angle	115° – 120°	115° – 120°	115° – 120°		
Inclination angle	5°	5°	5°		

Condition: H & T 290 – 330 HB Figures are guidelines only.

Machinability: comparitive study	BÖHLER M303	BÖHLER M303		
CUTTING				
Feed rate v, (mm/min.)	4.50	3.00		
Cutting speed v_{e} (m/min.)	23.00	20.00		
ROUGH MACHINING				
Tool	Depo NTV-M40			
Feed f _z (mm/tooth)	0.40	0.30		
Cutting speed v _° (m/min.)	180.00	180.00		
FINE MACHINING				
Tool	Franken-Emuge 1966A.	008		
Feed f _z (mm/tooth)	0.09	0.09		
Cutting speed v _c (m/min.)	200.00	180.00		
DRILLING 5 X D				
Tool	Titex VHM Bohrer A338	8TFT-6.8		
Feed f (mm/U)	0.15	0.15		
Cutting speed v _c (m/min.)	77.00	77.00		
DEEP-HOLE DRILLING 30 X D				
Tool	Hammond GM08000 A0320 EFHM (Gun drill)			
Feed f (mm/U)	0.02	0.02		
Cutting speed v _c (m/min.)	36.00	36.00		
Tool	Mitsubishi MSL 0700-L3	Mitsubishi MSL 0700-L30C VP15TF (Twist drill)		
Feed f (mm/U)	0.11	0.16		
Cutting speed v _c (m/min.)	50.00	65.00		
TAPPING M8				
Tool	Franken-Emuge B04537	7010080		
Feed f (mm/U)	1.25	1.25		
Cutting speed v _c (m/min.)	11.00	5.00		

BÖHLER M303 EXTRA: Condition: H & T 290 – 330 HB BÖHLER M303 EXTRA HIGH HARD: Condition: H & T 350 – 390 HB Figures are guidelines only.

The data contained in this brochure is merely for general information and therefore shall not be binding on the company. We may be bound only through a contract explicitly stipulating such data as binding. The manufacture of our products does not involve the use of substances detrimental to health or to the ozone layer.

Bohlasia Steels Sdn Bhd (350098-T) 18 Jalan Utarid U5/15, Seksyen U5, 40150 Shah Alam, Selangor, Malaysia T. +60/3/7842 1448 F. +60/3/7842 1454 E. sales@bohler-bohlasia.com.my www.bohler-bohlasia.com.my