

ADDITIVE MANUFACTURING POWDER

M789 AMPO / FE-BASED ALLOYS

			_		
An	slice	ition	500	- C	~ +~
ADL	JIICC	HUON	sea	ımer	ILS

Additive Manufacturing Application

Available Product Variants

15 - 45 µm

45 - 90 µm

Product Description

BÖHLER M789 AMPO is a newly developed maraging steel, which combines the mechanical properties of 1.2709 with the corrosion resistance of 17-4PH. This patent bending grade can easily printed without any preheating and achieves a hardness of about 52 HRC with a very easy heat treatment. Furthermore, this material shows an excellent polishability, which makes it the ideal choice for inserts with conformal cooling in plastic injection molding and in any other application where a high hardness and corrosion resistance is of need.

Process Melting

VIGA

Properties

- > Toughness & Ductility: high
- > Wear Resistance : good
- > Machinability: very high
- > Dimensional stability : very high
- > Polishability: very high
- > Corrosion resistance : very high
- > Micro-cleanliness : very high

Applications

- > 3D Printing direct metal deposition
- > Motorsport industry
- > Components for Displays
- > Lamps/Lenses for Automotive
- > Plastic Extrusion
- > Wind Power

- > 3D Printing selective laser melting
- > Camera lenses
- > Consumer Goods General
- > Mechanical Engineering
- > Powder for additive manufacturing
- > Hotrunner systems

- > Automotive
- > Civil and mechanical engineering
- > Injection Molding
- > Other Components
- > Tool Holders (milling, drilling, turning & chucks)

ADDITIVE MANUFACTURING POWDER M789 AMPO / FE-BASED ALLOYS

BÖHLER M789 AMPO

Technical data

Material designation	
BÖHLER patent	Market grade

Chemical composition (wt. %)

С	Cr	Мо	Ni	Ti	Al
< 0,02	12.2	1	10	1	0.6

Powder Properties

Particle Size Distribution 15-45µm*

Typical Values	D10	D50	D90
[µm]	18-24	29-35	42-50

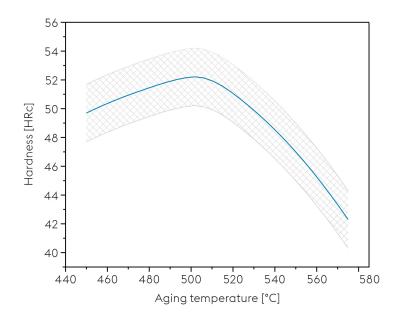
^{*} Measurement of particle size distribution is based on ISO 13322-2 (Dynamic image analysis methods);

Apparent density** min. 3.5 g/cm³

Mechanical Properties

With according Heat Treatment	
Tensile strength (Rm) (MPa)	1,800 to 1,900
Yield strength (RP _{0, 2}) (MPa)	1,670 to 1,770
Elongation (%)	4 to 8
Hardness (HRc)	51 to 53
Impact Toughness (ISO-V) (J)	6 to 14

 $^{^{\}star\star}$ Flowability and apparent density are based on DIN EN ISO 4490 resp. DIN EN ISO 3923-1.



ADDITIVE MANUFACTURING POWDER

BÖHLER M789 AMPO

M789 AMPO / FE-BASED ALLOYS

Tempering chart

Heat Treatment for optimum properties: Solution Annealing: 1000°C / 1h soaking time / air cooling to room temperature Ageing: 500°C / 3h soaking time / air cooling

The data contained in this brochure is merely for general information and therefore shall not be binding on the company. We may be bound only through a contract explicitly stipulating such data as binding. Measurement data are laboratory values and can deviate from practical analyses. The manufacture of our products does not involve the use of substances detrimental to health or to the ozone layer.

voestalpine BÖHLER Edelstahl GmbH & Co KG

Mariazeller Straße 25 8605 Kapfenberg, AT T. +43/50304/20-0 E. info@bohler-edelstahl.at https://www.voestalpine.com/bohler-edelstahl/de/

